
Sorting Algorithms

The 3 sorting methods discussed here all have wild signatures.  
For example, 
public static <E extends Comparable<? super E>>void BubbleSort(E[] array )

The underlined portion is a type bound.  This says that the 
generic type E used as the base type of the array must 
implement or extend a superclass that implements, the 
Comparable interface (which says that E has a compareTo(E) 
method.  See the discussion in Weiss of wildcards and type 
bounds,p. 151-154.

In less generic examples you probably don't need this.  If you are 
writing BubbleSort to sort strings its signature could just be

public static void BubbleSort(String[] array)



BubbleSort

BubbleSort makes repeated passes through 
the array, interchanging successive elements 
that are out of order.  When no changes are 
made in a pass the array is sorted.



public static <E extends Comparable<? super E>>void BubbleSort(E[] 
array ) {

boolean sorted = false;
int highest = array.length-1;
while (!sorted) {

sorted = true;
for (int i = 0; i < highest; i++) {

if (array[i].compareTo(array[i+1]) > 0) {
E buffer = array[i];
array[i] = array[i+1];
array[i+1] = buffer;
sorted = false;

}
}
highest -= 1;

}
}



33 12 45 17 23 52 24

12 33 17 23 45 24 52

12 17 23 33 24 45 52

12 17 23 24 33 45 52

12 17 23 24 33 45 52

Original data

Each row shows the 
result of a pass through 
the previous row, 
flipping consecutive 
elements that are out of 
order.



The first pass through the list does (n-1) 
comparisons.  That pass puts the largest 
element into its proper location at the last spot 
in the list, so the next pass does (n-2) 
comparisons.  Altogether we do at most

(n-1)+(n-2)+...+1 = n(n-1)/2 

comparisons.  For each comparison we do at 
most 1 interchange, which takes 3 assignment 
statements.  This means BubbleSort is worst-
case O(n2).  



Note that the best case for BubbleSort is when 
the data is already sorted; only one pass is then 
needed and the running time is O(n).  Of course, 
if you knew the data was already sorted there 
wouldn't be a lot of point in calling BubbleSort
...



SelectionSort

SelectionSort finds the smallest element and 
puts it at position 0, the smallest remaining 
element and puts it at position 1, etc.



public static <E extends Comparable<? super E>>void 
SelectionSort(E[] array ) {

for (int i=0; i < array.length-1; i++ ) {
// find the index of the smallest remaining element
int small = i;
for (int j = i+1; j < array.length; j++) {

if (array[j].compareTo(array[small]) < 0)
small = j;

}
// put the smallest remaining element at position i
E buffer = array[i];
array[i] = array[small];
array[small]= buffer;

}
}



33 12 45 17 23 52 24

12 33 45 17 23 52 24

12 17 45 33 23 52 24

12 17 23 33 45 52 24

12 17 23 24 45 52 33

12 17 23 24 33 52 45

12 17 23 24 33 45 52

Original data

The element put in its final 
location is in blue.



Selection sort does (n-1) passes.  The first one does 
(n-1) comparisons; the second (n-2) comparisons, 
and so forth.  There are a total of

(n-1) + (n-2) + (n-3) + ... + 1 = n(n-1)/2

comparisons.  This is very similar to BubbleSort, 
only instead of interchanging elements of the array, 
which takes 3 assignments, here each comparison 
results in at most one integer assignment.  Both are 
worst-case O(n2), but in specific examples 
SelectionSort usually runs somewhat faster.



Clicker Question:  Suppose you use SelectionSort on 
an array of size n that is already sorted.  How many 
comparisons will the sorting algorithm do?

A. None
B. 1
C. O(n)
D. O(n2)



Unlike BubbleSort, SelectionSort doesn't have a 
quick way out if the data is already sorted; it 
always does n*(n-1)/2 comparisons.



InsertionSort

InsertionSort maintains a sorted portion of the 
array (the front) and inserts elements from the 
unsorted portion into it.



public static <E extends Comparable<? super E>>void 
InsertionSort(E[] array ) {

for (int p = 1; p < array.length; p++) {

E item = array[p];

int j ;

for ( j=p; j > 0 && item.compareTo(array[j-1]) < 0; j--)

array[j] = array[j-1];

array[j]= item;

}

}



33 12 45 17 23 52 24

12 33 45 17 23 52 24

12 33 45 17 23 52 24

12 17 33 45 23 52 24

12 17 23 33 45 52 24

12 17 23 33 45 52 24

12 17 23 24 33 45 52

Original data

The sorted portion of the 
array is in blue.



It is easy to see that InsertionSort is no worse 
than O(n2) -- the outer loop runs n times, and 
the inner loop also takes at most n steps -- n 
steps done n times gives a total of n2 steps.

The worst case is when the data is reverse-
sorted (biggest to smallest); the first pass does 1 
comparison, the second 2, and so forth.  
Altogether this does 1+2+3+...+(n-1) = n(n-1)/2 
comparisons.



Clicker Question:  Suppose you use InsertionSort on 
an array of size n that is already sorted.  How many 
comparisons will the sorting algorithm do?

A. None
B. 1
C. O(n)
D. O(n2)



But InsertionSort has some saving graces.   Note 
that if the data is already sorted, each pass does 
only one comparison and no assignment 
statements, so the algorithm runs in O(n) steps.



We can say even more.  Call an inversion an instance of two 
entries of the array being in the wrong order: indices i and j with 
i < j but A[i] > A[j] 

The array 

33 12 45 17 23 52 24

has 8 inversions: (33 12) (33 17) (33 23) (33 24) (45 17) (45 23) 
(45 24) and (52 24)
Each time InsertionSort does an assignment it removes one 
inversion.  So if you have an array that is nearly sorted in that 
it has only a small number of inversions, InsertionSort can sort 
it quickly.



InsertionSort is a good choice if you have a small 
amount of data to sort; it tends to be faster than 
the other simple sorts and is easy to implement.

If you want to sort data the size of the NY phone 
book, InsertionSort is a terrible choice.  There 
are sorting algorithms that are O( n*log(n) ), 
which is vastly better than O(n2) when n is large.


